Identification of potential gene targets in systemic vasculitis using DNA microarray analysis
نویسندگان
چکیده
The present study aimed to identify the involvement of critical genes in systemic vasculitis, to gain an improved understanding of the molecular circuity and to investigate novel potential gene targets for systemic vasculitis treatment. The dual‑color cDNA microarray data of GSE16945, consisting of peripheral mononuclear blood cell specimens from 13 patients with systemic vasculitis and 16 healthy controls, was downloaded from the Gene Expression Omnibus database. Differentially expressed genes (DEGs) were screened in systemic vasculitis compared with controls using BRB ArrayTools, followed by the construction of a protein‑protein interaction (PPI) network using the clusterProfiler package, and significant functional interaction (FI) module selection. Furthermore, transcriptional factors (TFs) among the identified DEGs were predicted and a transcriptional regulation network was constructed. A total of 173 up- and 93 downregulated genes were identified, which were mainly associated with immune response pathways. FBJ murine osteosarcoma viral oncogene homolog (FOS), ubiquitin B (UBB), signal transducer and activator of transcription 1 (STAT1) and MX dynamin‑like GTPase 1 (MX1) were identified as hub proteins in the PPI network. Furthermore, UBB, FOS, and STAT1 were hub proteins in the three identified FI modules, respectively. In total, nine TFs were predicted among the DEGs. Of the DEGs that were predicted to be TFs, STAT1, v‑maf avian musculoaponeurotic fibrosarcoma oncogene homolog B (MAFB) and tyrosine 3‑monooxygenase/tryptophan 5‑monooxygenase activation protein Z (YWHAZ), which interacted with each other, were identified to regulate further DEGs as target genes. Various genes, including FOS, UBB, MX1, STAT1, MAFB, and YWHAZ may be potential targets useful for the treatment of systemic vasculitis.
منابع مشابه
Gene Identification from Microarray Data for Diagnosis of Acute Myeloid and Lymphoblastic Leukemia Using a Sparse Gene Selection Method
Background: Microarray experiments can simultaneously determine the expression of thousands of genes. Identification of potential genes from microarray data for diagnosis of cancer is important. This study aimed to identify genes for the diagnosis of acute myeloid and lymphoblastic leukemia using a sparse feature selection method. Materials and Methods: In this descriptive study, the expressio...
متن کاملGlobal gene expression analysis using microarray to study differential vulnerability to neurodegeneration
Neurodegenerative disorders such as Parkinson’s disease, motor neuron disease and Alzheimer’s disease is characterized by loss of specific cells within certain regions of the brain. One of the most compelling questions is to determine why specific cell populations are vulnerable to neurodegeneration. We addressed this question by studying global gene expression changes using an animal model of ...
متن کاملGlobal gene expression analysis using microarray to study differential vulnerability to neurodegeneration
Neurodegenerative disorders such as Parkinson’s disease, motor neuron disease and Alzheimer’s disease is characterized by loss of specific cells within certain regions of the brain. One of the most compelling questions is to determine why specific cell populations are vulnerable to neurodegeneration. We addressed this question by studying global gene expression changes using an animal model of ...
متن کاملComputational Identification of Micro RNAs and Their Transcript Target(s) in Field Mustard (Brassica rapa L.)
Background: Micro RNAs (miRNAs) are a pivotal part of non-protein-coding endogenous small RNA molecules that regulate the genes involved in plant growth and development, and respond to biotic and abiotic environmental stresses posttranscriptionally.Objective: In the present study, we report the results of a systemic search for identifi cation of new miRNAs in B. rapa using homology-based ...
متن کاملIdentification of specific gene expression after exposure to low dose ionizing radiation revealed through integrative analysis of cDNA microarray data and the interactome
Background: Accumulating reports suggest that the biological effects of low- and high- dose ionizing radiation (LDIR and HDIR) are qualitatively different and might cause different effects in human skin. Materials and Methods: To better understand the potential risks of LDIR, we analyzed three cDNA microarray datasets from the Gene Expression Omnibus database. Results: A pathway analysis showed...
متن کامل